ASYMMETRIC **HYDROGENATION OF ENOL PHOSPHINATES CATALYZED BY A CHIRAL FERROCENYLPHOSPHINE-RHODIUM COMPLEX. ASYMMETRIC SYNTHESIS OF OPTICALLY ACTIVE SECONDARY ALKYL ALCOHOLS**

Tamio Hayashi, Koichi Kanehira, and Makoto Kumada* Deparknent of *Synthetic Chemistry, Kyoto University, Kyoto* 606, *Japan*

Summary: Catalytic asymmetric synthesis of secondary alkyl alcohols (up to 78% ee) was accomplished by asymmetric hydrogenation of enol diphenylphosphinates, derived from prochiral ketones such as acetophenone, 3-methyl-2-butanone, and 2-octanone, in the presence of a cationic rhodium complex of $(R)-1-[(S)-1,2-bis$ (diphenylphosphino) ferrocenyl]ethanol (BPPFOH).

There has been intense interest and activity in asymmetric hydrogenation of prochiral olefins catalyzed by chiral phosphine-rhodium complexes,¹ and high optical yields (>85%) have been often attained in the reaction of α -(acylamino)⁻¹ and α -(acetyloxy) acrylic acids or esters,² itaconic acid derivatives,³ and α -(acylamino)styrenes.⁴ These olefins have the structural features shown below, containing the carbonyl oxygen three atoms away from the

$$
R^1
$$

 $Y = NH$, 0, CH_2
 $Y = R$, OR

carbon-carbon double bond, and the chelation formed by coordination of the carbonyl as well as the olefin to rhodium has been recognized to enhance the stereoselectivity in diastereomeric transition states.^{1e,5}

We report here that secondary alkyl alcohols of high optical purity could be obtained by asymmetric hydrogenation of enol phosphinates, which can be prepared regio- and stereoselectively from carbonyl compounds⁶ and have analogous structure to the olefins mentioned above, capable of coordinating to rhodium with P=O instead of C=O. The present method provides a new efficient route to the preparation of optically active alcohols. Although there have been several attempts for the preparation by asymmetric hydrogenation of prochiral ketones,⁷ the optical yields are generally low except for the reaction of those containing functional substituents, i.e., α -keto acids and esters⁸ and α -amino ketones.⁹

As shown in eq. 1, unsymmetrical ketones **1** were converted into enol phosphinates 2 with high regio- and stereoselectivity by phosphorylation of lithium enolates generated under kinetically controlled conditions (lithium diisopropylamide in THF at -78°). The phosphinates 2 were hydrogenated in the presence of a chiral phosphine-rhodium complex to give optically active secondary alkyl phosphinates 3. Conversion of 3 into alcohol 4 was effected by treatment with an excess of methyllithium in ether followed by hydrolysis. Direct acid or base hydrolysis of 3 was unsuccessful. The results obtained for the asymmetric hydrogenation of 2 are summarized in Table 1.

For the reaction of 1-phenylvinyl diphenylphosphinate **(2a), we** have examined several rhodium catalysts with chiral bisphosphine ligands, which have been reported to be effective

Substrate	Ligand b	Solvent	Temp. $(^{\circ}C)$	Conversion c	$%$ ee of $4d$
				$({}^{8}_{0})$	(Configuration)
(2a) OP(0) Ph ₂ Ph	$(R) - (S) - BPPFOH$	Benzene	20	100	78 (R)
	$(R) - (S) - BPPFOH$	Benzene	30	100	63 (R)
	(R) - (S) - BPPFOH	Benzene	20 ^e	100	(R) 64
	$(R) - (S) - BPPFOH$	THF	30	98	(R) 48
	$(R) - (S) - BPPFOH$	Methanol	20	$\boldsymbol{0}$	
	$(S) - (R) - BPPFA$	Benzene	20	94	(R) 43
	$(-) - DIOP$	Benzene	20	54 $(15)^f$	(S) 80
	BPPM	Benzene	20	$(26)^{f}$ 73	57 (S)
	BPPM	Methanol	20	28	(S) 16
	(S) -prophos	Benzene	20	$\mathbf 0$	
$OP(0)$ Me ₂	$(R) - (S) - BPPFOH$	THF	20	96	39 (R)
$OP(0) (OEt)_{2}$ Ph	$(R) - (S) - BPPFOH$	Benzene	20	79 $(18)^f$	(R) 33
OP(S) Ph ₂ Ph	$(R) - (S) - BPPFOH$	Benzene	30 ^o	$18\,$	24 (S)
$OC(0)$ Me Ph	$(R) - (S) - BPPFOH$	Benzene	20	26	25 (R)
(2b) OP(0) Ph ₂	$(R) - (S) - BPPFOH$	Benzene	20	100	60 (R)
	$(-) - DIOP$	Benzene	20	17	(S) 55
	BPPM	Benzene	20	12	(S) 40
(2c) OP(0) Ph ₂ $n - C_6H_{13}$	$(R) - (S) - BPPFOH$	Benzene	20^9	100	48 (R)
(2d) OP(0) Ph ₂ $t - B$ u	$(R) - (S) - BPPFOH$	Benzene	$_{30}e, h$	36	39 (S)
(2e) 0P(0)Ph ₂ Ъŀ.	(R) - (S) -BPPFOH	Benzene	30^e , h	40 $(20)^{\hat{i}}$	49 (S)

Table 1. Asymmetric Hydrogenation of Enol Diphenylphosphinates 2 Catalyzed by Chiral Phosphine Rhodium Complexes. a

 α The reaction was carried out at 5 atm initial hydrogen pressure for 40 h in the presence of cationic rhodium complex prepared in situ from a chiral ligand, $[Rh(NBD)_2]^+ClO_4^-$, and Et₃N $(2 : L^* : [Rh(NBD)_2]^+ C10_4^- : Et_3N = 1 : 0.01 : 0.01 : 0.05),$ \bar{b} See text, \bar{c} Conversion was determined by ¹H NMR spectra of the reaction mixture. Isolated yields of alcohol 4 were over 70% when the conversion is >90%. d Obtained by a chiral shift reagent study with tris(3trifluoroacetyl-d-camphorato)europium(III) [Eu(facam)3] or tris(d, d -dicampholylmethanato)europium(III) [Eu(dcm)₃]. e At 50 atm initial hydrogen pressure. f Yield of ethylbenzene. $\frac{g}{g}$ For 170 h. h For 70 h. i Yield of propylbenzene.

for the hydrogenation of a-acylaminoacrylic acids. A rhodium cationic complex with *(R)-l-[(S)-* 1',2-bis(diphenylphosphino)ferrocenyl]ethanol $[(R)-(S)-BPPFOH]^{10}$ was the best catalyst exhibiting both high enantioselectivity (78% *R)* and high catalytic activity (100% conversion in 40 h). The $(S)-N$, N -dimethyl-l- $\lceil (R)-1 \rceil$, 2-bis(diphenylphosphino)ferrocenyl]ethylamine $\lceil (S)-(R)-BPPFA \rceil$ ¹⁰ rhodium complex also catalyzed the hydrogenation in good yield, but the stereoselectivity was lower. The hydrogenation with $(-)-2$, 3-O-isopropylidene-1, 4-bis(diphenylphosphino)-2, 3-butanediol $\lceil(-)-D10P\rceil^{11}$ or $(25,45)-N-(tert-butoxycarbonyl)-4-(diphenylphosphino)-2-[(diphenylphos$ phino)methyl]pyrrolidine [BPPM]^{3C,12} as ligands resulted in low conversion and formation of ethylbenzene as a by-product, though the stereoselectivity was not low. Low catalytic activity of the (-)-DIOP- and BPPM-rhodium complex was also observed in the reaction of 1-isopropylvinyl diphenylphosphinate **(Zb).** The rhodium complex with (S)-1,2-bis(diphenylphosphino)propane [(S) prophos 1^{2b} was entirely inactive for the present hydrogenation.

The BPPFOH-rhodium catalyzed-hydrogenation of 2a gave rise to higher optical yields at lower reaction temperature and at lower hydrogen pressure, as is usually observed in the asymmetric hydrogenation of α -acylaminoacrylic acids.^{1,3c,13} Solvent effects on the catalytic activity and stereoselectivity were remarkable; benzene leads to high conversion and high selectivity while methanol leads to complete inhibition of the hydrogenation.

Substitution of the diphenylphosphinyl group in **2a** for other phosphorus-containing functional groups lowered the stereoselectivity. Thus, the optical purities of the products obtained for hydrogenation of 1-phenylvinyl dimethylphosphinate, diethyl phosphate, and diphenylphosphinothioate in the presence of the (R)-(S)-BPPFOH-Rh catalyst were 39% *(R),* 33% (R) , and 24% (S) , respectively. The hydrogenation of 1-phenylvinyl acetate resulted in low conversion and low stereoselectivity (25% R) under the present reaction conditions.¹⁴

The rhodium catalyst with $(R) - (S)$ -BPPFOH ligand was also effective for the asymmetric hydrogenation of diphenylphosphinates **(2b,2c)** derived from 3-methyl-2-butanone and Z-octanone, giving quantitatively 3-methyl-2-butanol **(4b)** (60% ee *R)* and 2-octanol (4~) (48% ee *R). It* should be noted that the optical yields attained here are much higher than those reported for direct hydrogenation of prochiral dialkyl ketones.7 Phosphinates **2d** and **2e** gave the corresponding hydrogenated products with opposite configuration S in moderate optical yields.

We are presently continuing studies on mechanistic aspects of this asymmetric hydrogenation, focusing attention upon the coordinating ability of the diphenylphosphinyl group toward rhodium.

Acknowledgement We thank the ministry of Education, Japan, for Grant-in-Aid for Scientific Research (No. 00547080) for partial financial support of this work.

REFERENCES AND NOTES

- 1. For reviews see (a) H. B, Kagan and J. C. Fiaud, "Topics in Stereochemistry," ed. by E. L. Eliel and N. L. Allinger, Wiley-Interscience, New York (1978), Vol. 10, p. 175; (b) D. Valentine, Jr. and J. W. Scott, Synthesis, 329 (1978); (c) R. Pearce, *Cutdysis, 2,* 176 (1978); (d) B. Bosnich and M. D. Fryzuk, "Topics in Inorganic and Organometallic Stereo- . chemistry" ed. by G. Geoffroy, Wiley-Interscience, New York (1981), p. 119; (e) R. E. Merrill, "Asymmetric Synthesis Using Chiral Phosphine Ligands," Reaction Design Corp., New Jersey (1979).
- 2. (a) B. D. Vineyard, W. S. Knowles, M. J. Sabacky, G. L. Bachman, and D. J. Weinkauff, *J. Am. them. sot., 99, 5946* (1977); (b) M. D. Fryzuk and B. Bosnich, *J. Am. Chem. Sot.,* **100,** 5491 (1978).
- 3. (a) K. Achiwa, *Chem. Lett.*, 561 (1978); (b) I. Ojima, T. Kogure, and K. Achiwa, *Chem*. *Lett., 567 (1978);* (c) I. Ojima, T. Kogure, and N. Yoda, *J. Org. Chem.,* 45, *4728 (1980);* (d) W. C. Christopfel and B. D. Vineyard, *J. Am. Chem. Sot.,* **101,** *4406 (1979;.*
- 4. D. Sinou and H. B. Kagan, *J. Organometd. Chem. 114, 325* (1976).
- 5. A. S. C. Chan, J. J. Pluth, and J. Halpern, *J. Am. Chem. Sot., 102, 5952 (1980),* and references cited therein.
- 6. (a) R, E. Ireland and G. Pfister, Tetrahedron *Lett., 2145* (1969); (b) I. J. Borowitz, S. Firstenberg, E. W. R. Casper, and R. K. Crouch, *J. Org. C&m., 36, 3282* (1971); (c) I. J. Borowitz, E. W. R. Casper, R. K. Crouch, and K. C. Yee, *J. Org. Chem., 37, 3873* (1972); (d) S. C. Welch and M. E. Walters, *J. Org. Chem.*, 43, 2715 (1978).
- 7. (a) P. Bonvicini, A. Levi, G. Modena, and G. Scorrano, *J. C. S. Chem. Common.,* 1188 (1972); (b) M. Tanaka, Y. Watanabe, T. Mitsudo, H. Iwane, and Y. Takegami, *Chem. Lett., 239 (1973); (c) C.* J. Sih, J. B. Heather, R. Sood, P. Price, G. Peruzzotti, L. F. H. Lee, and S, S. Lee, *J. Am. Chem. Soc.*, 97, 865 (1975); (d) A. Levi, G. Modena, and G. Scorrano, *J. C. S. Chem. Commuz., 6* (1975); (e) S. Toros, B. Heil, and L. Marko, *J. OrganometaZ. Chem.,* 159, *401 (1978);* (f) S. Toros, B. Heil, L. Kollar, and L. Marko, *J. Organometd. Chem.,* 197, *85 (1980).*
- 8. (a) T. Hayashi, T. Mise, and M. Kumada, *Tetrahedron Lett.,* 4351 (1976); (b) I. Ojima, T. Kogure, T. Terasaki, and K. Achiwa, *J. Org. Chem., 43, 3444 (1978); (c)* I. Ojima and T. Kogure, *J. Organometal. Chem.*, 195, 239 (1980).
- 9. *T.* Hayashi, A. Katsumura, M. Konishi, and M. Kumada, *Tetrahedron Lett., 425 (1979).*
- 10. T. Hayashi, T. Mise, M. Fukushima, M. Kagotani, N. Nagashima, Y. Hamada, A. Matsumoto, S. Kawakami, M. Konishi, K. Yamamoto, and M. Kumada, Bull. Chem. Soe. Jpn., 53, 1138 (1980).
- 11. H. B. Kagan and T. P. Dang, *J. Am. Chem. Sot., 94, 6429* (1972).
- 12. K. Achiwa, *J. Am. Chem. Soc.*, 98, 8265 (1976).
- 13. M. Fiorini and G. M. Giongo, *J. Mol. CataZ.,* 5, *303 (1979).*
- 14. Asymmetric hydrogenation of 1-phenylvinyl acetate with the diPAMP-Rh catalyst has been reported to proceed in 55% optical yield; K. E. Koenig, G. L. Bachman, and B. D. Vineyard, *J. Org. Chem., 45,* 2362 (1980).

(Received in Japan 24 July *1981)*